GCE

Chemistry B

H433/01: Fundamentals of chemistry

Advanced GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2020

Annotations

Annotation	Meaning
	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Question	Key	Mark	AO element	
1	C	1	1.1	
2	B	1	1.1	
3	B	1	1.1	
4	A	1	1.2	
5	D	1	1.2	
6	C	1	1.2	
7	C	1	1.1	
8	C	1	2.1	
9	C	1	1.2	
10	D	1	1.1	
11	D	1	2.1	
12	B	1	2.5	
13	B	1	2.7	
14	B	1	2.7	
15	A	1	1.2	
16	C	1	2.8	
17	C	1	2.6	
18	A	1	1.2	
19	C	1	1.2	
20	C	1	2.2	
21	B	1	2.8	
22	A	1	1.1	
23	D	1	1.2	
24	C	1	1.2	
25	D	1	2.5	
26	B	1	2.3	
27	A	1	2.8	
28	C	1	1.2	
29	B	1	1.1	
30	D	1	1.2	

Question			Answer	Mark	AO	Guidance
31	(e)		On short journeys the engine has not yet reached high temperature (Equation 31.1 is) endothermic so (position of) eqm will be on the left \checkmark Less ammonia available to remove oxides of nitrogen \checkmark At lower temp the rate of formation of ammonia will be slower \checkmark	4	3.1 2.5 3.1 2.5	ORA
31	(f)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=0.67 \mathrm{dm}^{6} \mathrm{~mol}^{-2}$ award 4 marks Expression for K_{c} Eqm conc of hydrogen $=3\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND Eqm conc of nitrogen $=2\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ $\left(K_{c}=6^{2} / 2 \times 3^{3}\right)=0.67 \checkmark$ units $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \checkmark$	4	2.6×4	ALLOW one or more sf. ALLOW ecf on incorrect [N_{2}] and [H_{2}] MP1 expression, MP2 concs of both, MP3 evaluation, MP4 units If an expression for K_{c} contains only numbers, it must be clear which substance they relate to for MP1 ALLOW units in either order

Question			Answer	Mark	AO	Guidance
32	(a)		(Chlorine and bromine are) toxic \checkmark	1	1.1	Flammable is CON, IGNORE other correct statements e.g volatile
32	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=4 \times 10^{19}$ award 3 marks Unit conversion $5 / 1000=5 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$ AND Mole conversion $5 \times 10^{-3} / 79.9=6.258 \times 10^{-5}$ moles \checkmark Multiplication by $N_{A} \checkmark$ $=4 \times 10^{19} \checkmark$	3	2.2×3	3.7625 ...to 2 or more sf scores 2 marks. ALLOW evaluation of any expression to 1 sf for MP3
32	(c)	(i)	Orange/brown solution forms \checkmark	1	1.1	IGNORE starting colour if green/colourless/yellow NOT Red
32	(c)	(ii)	$\mathrm{Cl}_{2}+2 \mathrm{Br}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{Br}_{2} \checkmark$	1	1.1	IGNORE state symbols
	(c)	(iii)	Chlorine better able to attract electrons than bromine/ Cl better oxidising agent so removes electrons from $\mathrm{Br} \checkmark$	1	1.1	Must be comparative
32	(c)	(iv)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=5.70 \times 10^{4}\left(\mathrm{dm}^{3}\right)$ award 4 marks Volume of water electrolysed $=1000 / 1.24=$ $806.45 \mathrm{dm}^{3} \sqrt{ }$ Moles of $\mathrm{C} l$ - ions $=806.45 \times 208 / 35.5=4725.12 \checkmark$ Volume of chlorine $=4725.12 \times 24 / 2=56701 \mathrm{dm}^{3} \checkmark$ $=5.70 \times 10^{4}\left(\mathrm{dm}^{3}\right)^{\checkmark}$	4	2.6×4	ALLOW 2 or more sf $\begin{aligned} & 57000, \\ & 1.13 \times 10^{5}, \\ & 8.72 \times 10^{4} \end{aligned}$ score 3 marks.

Question		Answer	Mark	AO Element	Guidance	
$\mathbf{3 2}$	(d)	(i)	Simple molecules with weak pd-pd forces/intermolecular bonds between \checkmark	$\mathbf{1}$	$\mathbf{2 . 5}$	If the type of imb is specified, it must be pd-pd. Must mention molecules or intermolecular
$\mathbf{3 2}$	(d)	(ii)	$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl} \downarrow$	$\mathbf{1}$	$\mathbf{1 . 2}$	ALLOW $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl} l^{-}$ NOT eqm sign
$\mathbf{3 2}$	(e)	(i)	Oxidation states of bromine -1 AND $0 \checkmark$ Oxidation states of $\mathrm{S}+6 \mathrm{AND}+4 \checkmark$	$\mathbf{2}$	$\mathbf{1 . 2 \times 2}$	IGNORE numbers in other boxes consider as working. Ox states must have signs before the number.
$\mathbf{3 2}$	(e)	(ii)	$2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \checkmark$	$\mathbf{1}$	$\mathbf{1 . 2}$	IGNORE state symbols

Question			Answer	Mark	AO	Guidance
33	(d)		Please refer to the marking instructions on pages 4/5 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Identifies A as phenol and B as propanone using the evidence from some tests, the mass spectrum for product A and the composition of product B. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Identifies A as a phenol and B as a ketone or $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ using the evidence from some tests OR the mass spectrum for product A OR the composition of product B. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Identifies A as a phenol OR B as a ketone using the evidence from some tests OR the mass spectrum for product A OR the composition of product B. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit	6	$\begin{aligned} & \hline 3.1 \times 3 \\ & 3.2 \times 3 \end{aligned}$	Indicative scientific points may include: Product A: - Is a phenol - It is weakly acidic, but not strong enough to react with sodium carbonate - Gives the purple colour with FeCl_{3} - Mass spectrum shows that the Mr_{r} is 94 - Consistent with phenol, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ Product B: - Moles: C 5.175; H 10.3; O 1.735 - Empirical formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ - Not an acid - Can be reduced to an alcohol so is aldehyde or ketone. - Does not get oxidised by Tollen's reagent so is a ketone. - propanone/ $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.

Question			Answer	Mark 1	AO Element 1.2×3	Guidance Mention of alkaline conditions is CON
34	(a)		Below $5^{\circ} \mathrm{C} \checkmark$			Mention of alkaline conditions is CON ALLOW without chloride ion Bonding in naphthol must be as shown.
34	(b)	(i)	Concentrated sulfuric acid and reflux OR fuming sulfuric acid and $40^{\circ} \mathrm{C} \checkmark$	1	1.2	ALLOW 'c'/'conc' for concentrated and formula
34	(b)	(ii)	Dye C: Not very soluble as only the phenol group (and N atoms) can form H bonds with water. The rest of the molecule has weak id-id imbs . Dye D: More soluble because $\mathrm{SO}_{3}-/ \mathrm{O}^{-}$can form ion dipole bonds with water. Forms more H bonds with water.	4	2.7×4	Must mention groups that can H bond to score
34	(c)	(i)	Electrons in the extended delocalised system \checkmark electrons move to higher energy levels \checkmark $\Delta \mathrm{E}=\mathrm{h} v \vee$	3	1.1×3	Splitting d-orbitals is CON for MP1, IGNORE chromophore alone
		(ii)	Complementary colour is seen/ frequencies not absorbed are seen (AW)	1	1.1	Light emitted is CON

Question		Answer	Mark	AO	Guidance
34	(d)	The NH_{2} groups on wool become protonated/turn to $\mathrm{NH}_{3}{ }^{+}$in weak acid \checkmark Ionic interactions between $\mathrm{SO}_{3}-/ \mathrm{O}^{-}$groups and $\mathrm{NH}_{3}{ }^{+}$	2	2.7×2	
34	(e)	Please refer to the marking instructions on pages $4 / 5$ of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed description of calibration of the colorimeter. AND Detailed description of testing of fabric samples. AND Includes several controlled variables. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Detailed description of calibration of the colorimeter. OR Detailed description of testing of fabric samples. AND Includes several controlled variables. OR Outline description of calibration of the colorimeter. AND Outline description of testing of fabric samples. AND Includes a few controlled variables. There is a line of reasoning presented with some structure. The information presented is relevant and	6	3.1×2 3.3×2 3.4×2	Indicative scientific points may include: Calibration of the colorimeter: - Make up several solutions of dye of known concentration. - Select a colour filter complementary to the dye colour. - Zero colorimeter with a cuvette of water. - Measure the absorbance of the standard dye solutions. - Plot a calibration curve. Testing the fabric samples: - Immerse fabric in water at the desired temperature for a fixed time and stir. - Remove fabric and test remaining water to find absorbance. - Use calibration curve to find concentration of dye washed out of the fabric. - Repeat using water of different temperatures. Controlled variables. - Immerse the fabric in water for a fixed time. - Use the same volume of water each time. - Keep the stirring constant - Cut the fabric into equal sized pieces for testing. - Same type of fabric

Question	Answer	Mark	$\overline{\mathrm{AO}}$ Flement	Guidance
	Level 1 (1-2 marks) Outline description of calibration of the colorimeter. OR Outline description of testing of fabric samples. OR Identifies afew controlled variables. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit			

Question			Answer	Mark	AO	Guidance
35	(a)	(i)	White precipitate \checkmark	1	1.2	
		(ii)	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})^{\checkmark}$	1	1.2	
35	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 0.53 award 3 marks Moles of Cl^{-}ions in $25 \mathrm{~cm}^{3}$ of the diluted sea water $=0.1$ $\times 0.0265\left(=2.65 \times 10^{-3}\right)^{\checkmark}$ Moles of chloride ions in $20 \mathrm{~cm}^{3}$ original sea water $=0.1$ $\times 0.0265 \times 100 / 25(=0.0106) \checkmark$ Concentration of Cl- ions in original sea water $=0.1 x$ $0.0265 \times 100 / 25 \times 1000 / 20=0.53\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark$	3	2.8×3	ALLOW 2 or more significant figures 0.106 scores 2 OR conc $\mathrm{Cl}^{-}($in diluted $)=26.5 \times 0.1 / 25=0.106 \checkmark \checkmark$ conc $\mathrm{Cl}^{-}($in undiluted $)=26.5 \times 0.1 / 25 \times 5=0.53 \checkmark$
35	(c)	(i)	At end point $\left[\mathrm{Ag}^{+}\right]=[\mathrm{Cl}-]$, stated or implied \checkmark $\left[\mathrm{Ag}^{+}\right]=\sqrt{ } K_{\mathrm{sp}} \checkmark$	2	$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	Second mark depends on first
35	(c)	(ii)	$\begin{aligned} & {\left[\mathrm{CrO}_{4}{ }^{2-}\right]=2.5 \times 10^{-4} \times 1000 / 53.50} \\ & =4.67 \times 10^{-3} \checkmark \\ & {\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=2 \times 10^{-10} \times 4.67 \times 10^{-3}} \\ & =9.35 \times 10^{-13} \checkmark \end{aligned}$ This is less than the solubility product of silver chromate so no precipitate (of silver chromate) forms (before all the Cl^{-}ions have reacted). \checkmark	3	3.1×3	Alternative method: $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ when ppt forms $=3 \times 10^{-12} /\left[\mathrm{Ag}^{+}\right]^{2}$ $=0.015 \checkmark$ $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$ in the solution is $2.5 \times 10^{-4} \times 1000 / 53.50$ $=4.67 \times 10^{-3} \checkmark$ This less than the 0.015 needed for a precipitate so no ppt forms \checkmark ALLOW MP3 if a correct conclusion from incorrect calculated numbers

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

